An Approximation for the Fourier Transform of Absolutely Continuous Mappings
نویسنده
چکیده
The Fourier Transform is an important mathematical tool in a wide variety of fields of science and engineering [1, p. XI]. In this paper, by the use of some integral identities and inequalities developed in [2](see also [3]), we point out some approximations of the Fourier transform in terms of the complex exponential mean, E (z, w) (see Section 2) and study the error of approximation for different classes of absolutely continuous mappings defined on finite intervals. Throughout this paper g : [a, b] → R is an absolutely continuous mapping defined on the finite interval [a, b] and F (g) is its Fourier transform. That is,
منابع مشابه
Approximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces
This paper introduces an implicit scheme for a continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup. The main result is to prove the strong convergence of the proposed implicit scheme to the unique solutio...
متن کاملAn Approximation of the Hankel Transform for Absolutely Continuous Mappings
Using some techniques developed by Dragomir and Wang in the recent paper [2] in connection to Ostrowski integral inequality, we point out some approximation results for the Henkel’s transform of absolutely continuous mapping.
متن کاملNew best proximity point results in G-metric space
Best approximation results provide an approximate solution to the fixed point equation $Tx=x$, when the non-self mapping $T$ has no fixed point. In particular, a well-known best approximation theorem, due to Fan cite{5}, asserts that if $K$ is a nonempty compact convex subset of a Hausdorff locally convex topological vector space $E$ and $T:Krightarrow E$ is a continuous mapping, then there exi...
متن کاملNumerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev approximation
A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...
متن کاملCharacterization of weak fixed point property for new class of set-valued nonexpansive mappings
In this paper, we introduce a new class of set-valued mappings which is called MD-type mappings. This class of mappings is a set-valued case of a class of the D-type mappings. The class of D-type mappings is a generalization of nonexpansive mappings that recently introduced by Kaewkhao and Sokhuma. The class of MD-type mappings includes upper semi-continuous Suzuki type mappings, upper semi-con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002